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Changes in velocity profiles were investigated experimentally in a turbulent boundary layer at a diverging wall in a 
flat asymmetrical diffuser duct. 

For attached flow in the duct, it is shown that the velocity distribution follows the same universal logarithmic function 

as for a flow with a zero pressure gradient; as the divergence angle of the duct is increased, the value of the constant in this 
function decreases downstream. 

It is also shown that flow separation is a transition to a new stable state, when the classic flow at the wall boundary 
layer cannot adequately counteract the positive pressure gradient which is determined by the duct geometry. 

1. Depending on the nature of the reaction to the positive pressure gradient, the turbulent boundary layer can separate 

into two flow regions: an inner wall region (Y = y/~ < 0.2) and an external region (Y > 0.2). Here y is the distance from 

the wall, and ~ is the physical thickness of the boundary layer. Three main flow zones are distinguished near the wall [I]: a 
viscous sublayer next to the wall; a transition zone, where viscous friction forces are on the same order as the turbulent stresses 

of Reynolds friction; and an inner turbulent region, which occupies 10 to 20% of the thickness of the boundary layer according 

to various estimates, where the velocity distribution follows a universal logarithmic law 

u-5,751g(~-) +C. (1.1) 

Here U is the longitudinal component of the average velocity at a distance y from the wall; u~ = (~,/p)I/2 is the dynamic 

velocity; r~ is the tangential stress at the wall; p is the density; v is the kinematic viscosity; and the constant C depends on the 

surface state (C = 5.5 for hydraulically smooth surfaces). 
The time for the outer part of the layer to react to a local pressure gradient dP/dx is finite and corresponds to the 

displacement of the flow by tens of boundary-layer thicknesses. Therefore the velocity distribution in this region depends both 
on local conditions and on previous flow developments, so there is no fixed relationship between the shape of the velocity 

profile and the local value of dP/dx. The so-called equilibrium boundary layers are an exception; their existence under positive 
pressure gradients was first observed by Clauser [2]. 

For a given pressure distribution, the velocity distribution for equilibrium layers corresponds to the function 

u |  .[ yu / (1.2) 
o 

where U~ is the velocity at the outer edge of the boundary layer and ~1 is the thickness of the displacement. 

The part of the layer next to the wall reacts very quickly to flow perturbations on the wall side [3], but returns to the 
conditions of unperturbed flow just a short distance into the flow from the origin of the perturbation. At the same time, external 

perturbations, including a positive pressure gradient, have no effect on the wall flow within limits. The proof of this is that 

the velocity distribution at the wall maintains universal conditions of similitude for large positive pressure gradients [4]. 
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These properties agree with S. S. Kutateladze's concept of the conservation of wall turbulence [5]. The related 

maximum-stability principle [6] allows us to distinguish theoretically a class of velocity profiles in the flow near the wall, which 

are most likely to be realized for a given perturbation. In other words, the average turbulent flow can be formally subjected 

to perturbations of one kind or another, just as in the stability of laminar flow. While the maximum-stability principle 

undoubtedly will be widely applied in its general formulation [7] in the future, currently it has only been used in the simplest 

quasi-laminar approximation [8]. Nonetheless, the very idea of maximum stability has already been used successfully to explain 

the behavior of  flow in a turbulent boundary layer. 

In this regard there is undoubted interest in both an experimental investigation and the corresponding analysis of how 

a positive pressure gradient changes velocity profiles and other characteristics in the boundary layer. 

The boundary layer has different properties near the wall and in its outer parts, so changes which arise from a positive 

pressure gradient must be examined separately. Here, for all cases investigated the velocity distribution is plotted both in the 

coordinates U / u  r =-f(y.ur/v ) for flow near the wall and in the coordinates (U~, - U)/u r = f(y-ur/61U=) for the whole layer. 

However, flows with dP/dx > 0 have an intermediate region for which the average velocity follows a "square root 

law" [9]. Therefore, before the flow separates, the velocity distribution in the boundary layer is also plotted in coordinates 
U/U= = f{(y/6p)l/2}, where 6p = ~-u- [ dP/dx I -1 

2. The research was done in a flat asymmetric diffuser duct, which had been used previously [10-12]. 

A 500 mm long upstream duct which contained a converging section which transitioned smoothly into a duct of  constant 

cross section was attached to the diffuser section in order to develop a turbulent boundary layer ahead of  the diffuser section. 

The diffuser section was made asymmetric in order to localize the flow separation (when it arose) to the diverging wall, which 

was made from a 57 x 270 mm flat plastic plate which had a hinged connection with the wall of  the upstream duct. 

The diffuser section had the following geometric relationships: a /h  1 = 1.0 and 0.38 _< a/h  2 <_ 1.0 so that the 

divergence angle ot could be varied. Here a = 57 mm is the distance between the side (parallel) walls, and h 1 and h 2 are the 
heights of the inlet and outlet cross sections of the diffuser. 
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Fig. 3 

A differential water manometer with an accuracy of 2 mm of water was used to measure the pressure distribution along 

the centerline of  the diverging wall through a set of 0.5 nun diameter holes 5 mm apart. Then the experimental function P 

= P(x) was approximated by the least-squares method using a spline which had continuous first and second derivatives. The 

root mean square error  of  the approximation was less than the measurement error in all cases investigated. The value of 

dP/dx = f(x) was obtained from the resultant P(x). 

The longitudinal component of  the average velocity in the boundary layer was measured along the centerline of the 

diverging wall by using a flattened Pitot tube with outer dimensions of 0.3 • 1.0 mm. The tube was introduced into the 

boundary layer from the opposite wall using a micrometer, which allowed the distance from the wall to be measured with an 

accuracy up to 0.05 mm. A special locating device moved the tube along the wall and rotated it in two planes (parallel and 

perpendicular to the diverging wall). 

The pressure difference between the Pitot tube and the static-pressure samplings was determined by a differential water 

manometer with an accuracy of  2 mm water. An alcohol micromanometer with an accuracy of 0.1 mm water was used near 

the wall where the velocities were small. 

The value of 5 was determined as the distance from the wall at which U = 0.99"Uo,. The thickness of the displacement 

~1 and the momentum-loss thickness ~2 were calculated using standard integral functions [1] from the experimental function 

U = U(y). The resultant relative error in ~1 and t52 was no more than 3 %. 

The velocity field and the flow direction were measured in four evenly spaced cross sections of the diffuser section, 

including the inlet and outlet cross sections. The measurements were done using a triple-pointed cylindrical nozzle 2 mm in 

diameter, which was made in accordance with Gorlin 's  recommendations [13]. A special locating device, which was clamped 

to a lateral wall of  the duct, allowed the nozzle to be placed at any point within the cross section to an accuracy of 0.5 mm. 

The same nozzle was used to measure the flow direction in the boundary layer along the centerline of the wall and in planes 

parallel to it. This was done by inserting the nozzle into the boundary layer using the locating device used for the Pitot tube. 

Measurements made in this manner established that the velocity field in the flow core at the diffuser inlet was uniform 

and symmetric relative to the duct plane of symmetry, which passed through the centerline of the diverging wall. 

Attached flow conditions were realized in the diffuser for the range 1.0 _< n = h2/h 1 < 2.0. As n > 2.0, flow 

separation was recorded at the diverging wall, first near the outlet, and then closer to the inlet section as n increased. 

The pressure ratio e 2 = P2/Po (where P2 is the pressure at the diffuser outlet and Po is the total stagnation pressure 

at the duct inlet) was held constant on the order of 0.971 in all the experiments for various values of n. 
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Fig. 4 

The working fluid was air from a centrifugal compressor. The air entered the duct through a 500 mm diameter 

equilibration tank which contained two series of screens to even the flow at the inlet to the experimental duct. The air flow 

rate was measured by a standard nozzle, which was made in accordance with recommendations by Preobrazhenskii [14]. 

The measurements were done for expansion ratios n = 1.3, 2.0, 2.4, and 2.65, which corresponded to divergence 

angles c~ = 3.6, 12.2, 17.2, and 20.4 ~ The dimensionless velocity ~ in the flow core at the diffuser inlet varied within the 

range of 0.26-0.31; thus the effect of compressibility could be neglected. 
The Reynolds number Re, calculated along the length of the upstream section and the core flow velocity at the inlet 

cross section of the diffuser section was 2.8.106 , 3.3" 106 , 3.1-106 , and 2.6-106 , respectively for these expansion ratios. 

The value of  ~'u was calculated from the Ludwieg-Tillman formula [4] 

. -0268 
U=~ 

~r,= 0,123" 10 -~ [S_~) pU2=. (2.1) 

Here H = t51/(52 is the boundary layer form factor. The form of Eq. (2.1) does not satisfy the condition % = 0 at the separation 

point, but it describes boundary-layer test data for attached flow well enough [15], while values of  7u calculated from (2.1) 

for H > 2.5 are very small. However, an error analysis of Eq. (2.1) shows that the relative error in r,~ grows sharply as H 

increases. For expansion ratios of  n = 1.3 and 2.0, the relative error in 7-~ did not exceed 4.5% and 7%, respectively, for all 

cases investigated. 

For n = 2.4 and 2.65, the relative error in ~'o,, obtained from Eq. (2.1), did not exceed 8% in regions of  stable attached 

average flow in the boundary layer, as shown by Dmitriev [11] for these cases using the Sandborn-Klein method [15]. 

However, as the flow becomes unstable and separated, the error starts to grow rapidly as H increases; therefore the calculated 

values of  ro~ in this case give only a qualitative conclusion on the type of flow. 

3. Figure 1 shows the velocity distribution in the boundary layer at the diverging wall for n = 1.3. The experimental 

points 1-8 correspond to cross sections X = x/L = 0.02, 0.06, 0.18, 0.29, 0.41, 0.55, 0.83, and 0.97, where x is the 

coordinate along the diverging wall and L is its length. 

According to Gol'dshtik and Shtern [8], Eq. (1.1) determines the most stable velocity distribution for zero-gradient 

flow in the wall region outside the viscous sublayer and the transition region. In Fig. la, this function is shown by the line la 

(C = 5.5). With only a small scatter, the experimental points are located on the line la for Y <_ 0.1 at cross sections 

X = 0.02, 0.06, and 0.18. For X = 0.29, Eq. (1.1) is satisfied only for a distance Y -= 0.06 from the wall, and the 

experimental points that correspond to the outer section of the boundary layer fall much farther from the line la than they do 

in the other cross sections. 
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In this case the largest value of  dP/dx occurs for X = 0.02, after which it decreases monotonically as X increases [the 

corresponding function dP/dx = f(x) is shown as curve 1 in Fig. 5]. Here the velocity distribution in the cross section at 

X = 0.29 illustrates the inertia discussed above. When that occurs the outer part of  the layer reacts on the local pressure 

gradient. 
At X = 0.41 the universal logarithmic velocity-distribution function (1.1) again is followed to a distance Y = 0.1 from 

the wall. However, it should be noted that the experimental points drop below the line la for X = 0.41 and even more so for 

X = 0.55, which indicates a lower value of  C in (1.I). 

It is not impossible that the deviation of these experimental points from the initial line la comes from errors in 

conducting and analyzing the experiment, especially because the deviation is small. 

At X = 0.83 and 0.97 the experimental points again correspond with the line la: for Y <_ 0.13 at X = 0.83 and for 

Y <_ 0 . 1 6 a t X  = 0 . 9 7 .  

Thus, this example indicates that the velocity distribution for stable attached flow in the completely turbulent wall 

region of  the boundary layer is determined by Eq. (1.1) with C = 5.5 as the flow develops downstream and that maximum 

stability occurs near the wall region in this case. 
For n = 1.3, the experimental points for all cross sections lie with some scatter on one curve (U~. - U)/u r = f(y-uJ 

~lUo.) (Fig. lb). This indicates that the flow is almost at equilibrium for this pressure gradient; i.e., it is energetically balanced 

in all cross sections. 
Figure 2 shows the velocity distribution in the boundary layer for n = 2.0. The experimental points 1-6 correspond 

to cross sections with X = 0.02, 0.18, 0.29, 0.69, 0.83, and 0.97. The line la in Fig. 2a corresponds to Eq. (1.1) with 

C = 5.5. 
For X = 0.02 and 0.18, the velocity distribution follows Eq. (1.1) for Y _< 0.1, and the experimental points coincide 

with the line la. 
Downstream, from X = 0.29 to X = 0.69, Eq. (1.1) is followed for Y < 0.08 and 0.06 respectively. However, the 

value of  C is smaller (line 2a in Fig. 2a). For X = 0.83 and 0.97, the velocity distribution deviates even more from the initial 

one. The general Eq. (1.1) is followed in these cross sections for Y _< 0. I and 0.12, respectively; however the constant C 

decreases even more (lines 3a and 4a in Fig. 2a). For X = 0.97, C is on the order of 2.3. 

An analogous decrease in the viscous sublayer for diffuser flow has been obtained earlier [16]. It has also been shown 

[17] that the thickness of  the viscous sublayer of  the boundary layer decreases downstream. 

The measurements described above did not allow us to obtain direct data on the velocity distribution in the region of 

the viscous sublayer. However, it can be assumed from earlier results [16, 17] that ra :leviation from the velocity distribution, 

determined by Eq. (1,1) with C = 5.5, indicates a decrease in the thickness of  the viscous sublayer. 

From Fig. 2b Jt can be seen that the velocity distributions deviate significantly from the initial one over the whole layer 

thicknesses as the flow develops downstream. However, it should be noted that for X = 0.69, 0.83; and 0.97, where 

- 1 . 9  _< lg(y.uJ~51U~.) _< - 1 . 6 ,  the experimental points lie close to a single curve in the range 0.15 _<_ Y < 0.55. 

This fact and the occurrence of  equilibrium flow for n = 1.3 evidently result from features of  the pulsating motion 

in the boundary layer for diffuser flow. 
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Today a large volume of  experimental data has been accumulated [18-24] which uniquely shows that turbulent energy 

is produced in two independent regions in the cross section of the turbulent boundary layer. 

The first region is located directly next to the wall, as it is for the turbulent layer with zero pressure gradient, while 

the second is in the outer part of  the layer. Depending on the data, this region lies in the range 0.25 < Y _< 0.35 [20], 

0.4 <_ Y <_ 0.6 [21, 22], or Y --- 0.5 [24]. 

The pulsation intensity and the generation of turbulent energy both increase with distance from the diffuser inlet. 

Evidently this zone of turbulent energy generation is what equilibrates the boundary layer flow for n = 1.3 and causes local 

equilibrium in the outer part of the layer for n = 2.0. 

Figure 3 shows the velocity distribution in the boundary layer at the diverging wall with n = 2.4. The experimental 

points 1-5 correspond to cross sections X = 0.02, 0.06, 0.154, 0.2 and 0.294. 

Complete or stable separation of the boundary layer from the wall does not occur immediately [15]. It is preceded 

by a state of alternating or unstable separation, in which a zone with reverse flow arises and vanishes near the wall. The 

fraction of time in which flow is reversed (the alternation factor) increases downstream. 

In this case the boundary layer is in a region of stable attached flow for X < 0.22, while a transition to unstable 

separation occurs for X > 0.22 [I i ] .  

The experimental points for X = 0.02 and 0.06 and Y _< 0.05 fall on the line la, which is calculated from Eq. (1.1) 

with C = 5.5. For X = 0.154 and 0.2 and Y _< 0.06 and 0.05, respectively, the velocity distribution follows Eq. (1.1), but 

the value of  C is reduced (lines 2a and 3a in Fig. 3a). 

The breakdown of Eq. (1.1) is first observed for X = 0.294 (curve 5), and the universal logarithmic velocity 

distribution in the wall region of the layer breaks down even more for X > 0.294, as shown by calculations of  ro~ from Eq. 

(2.1), and also of U/u~ and y'ur/~. 

When the velocity distribution is plotted as the function (Uo. - U)/u r = f(Y'Ur/51U~.) for n = 2.4, it deviates from 

the initial function more and more as X increases, and non-equilibrium flow occurs in the outer part of  the layer. 

These examples (Figs. 1-3) show that the velocity distribution in the completely turbulent wall-region of the layer is 

determined by Eq. (1. I) for attached average-flow conditions in the boundary layer for diffuser flow, and that when Eq. (1.1) 

is followed it can be taken as evidence of universal energy equilibrium. As the pressure gradient defined by the duct geometry 

increases (as the divergence angle ~ increases) and as the distance from the duct inlet increases, the constant C in (1.1) will 

decrease monotonically if Eq. (1.1) is followed, as noted in [16]. 

The velocity distribution also follows Eq. (1.1) for separated conditions (n > 2.0) for some distance from the inlet 

cross section; however the value of  the constant C decreases faster than for attached conditions (see Figs. 2a and 3a for 

identical values of X). The universal logarithmic function (1.1) breaks down in the wall region at some stage in the flow 

development, which indicates that energy equilibrium breaks down in this region. However, this breakdown occurs long before 

the separation itself. In particular, it has been shown [11] that complete flow separation occurs in the cross section X = 0.62 

for n = 2.4. 

Figure 4 shows the distribution of average velocities in the boundary layer in the coordinates U/Uo, = f{(y/Sp)l/2}. 

The experimental points 1-6 in Fig. 4a correspond to the cross sections X = 0.02, 0.18, 0.29, 0.69, 0.83, and 0.97 for 

n = 2.0, while the points 1-5 in Fig. 4b correspond to X = 0.02, 0.06, 0.154, 0.2, and 0.294 for n = 2.4. 

It is interesting to note that for n = 2.0, the experimental points for X = 0.69, 0.83, and 0.97 lie on a single curve 

with little scatter over the whole layer thickness, but the relative velocity depends linearly on Orp) 1/2 = (yhSp) 1/2 in the region 

5 < (37p) 1/2 _< 10, which corresponds to 0.15 _< Y _< 0.55. This means that tSp and Up = [(dP/dx)-y/p] 1/2 are characteristic 
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scales which determine the nature of  the flow in this region in the boundary layer. Here Up is the dynamic velocity of the 

pressure gradient. The nature of  the velocity distribution in Fig. 4a confirms that the flow is in equilibrium in the outer part 

of the boundary layer for n = 2.0 in the cross sections X = 0.69, 0.83, and 0.97; it also confirms the results of earlier 

analyses [9, 25] of  boundary-layer flow with a positive pressure gradient. 

As can be seen from Fig. 5 (curve 3), when n = 2.4 the change of dP/dx is wave-like in the transition region to 

unstable separation. In this case the "square root law" [9] is not satisfied in the turbulent boundary layer, which conftrms the 

velocity distribution for n = 2.4 shown in Fig. 4b. 

4. Figure 5 shows the distribution of  dP/dx along the diverging wall. Curves 1-4 correspond to expansion ratios of 

n = 1.3, 2.0, 2.4, and 2.65. 

Gogish and Stepanov [26] present all the most widely used local separation criteria in the form 

z dP  

pc. ~ ~ B R e  - 1 / - ,  (4 .1 )  

where z is the characteristic thickness of  the boundary layer, and B and m are constants determined empirically as a function 

of the Math number and Re. If  z = /~1 and Re is large enough, which is true in this case, then B = 0.015 and m = oo [27]. 

Under these assumptions, the inequality (4.1) takes the form 

d x dP 

pc. ~ - -  ;~ 0,015. (4.2) 

By multiplying the left and right sides of  (4.2) by p'U2/ru, we obtain 

~1 dP/dx 0,03 
rl = > (4.3) 

T el 

The inequality (4.3) defines the conditions for separation to occur. Generally speaking, the parameter H is used as the 

characteristic for the flow gradient. However, it has been shown [23] that H can be used as a measure of  flow stability in the 

boundary layer. In this sense the inequality (4.3) can serve as a stability criterion for the existence of  separated and attached 

flows in the boundary layer. 
Two stable flow states are possible in diffuser ducts: attached flow and separated flow. Here "stability" should be 

understood to mean that separated flow always occurs under certain conditions. 

The stability of  these two flow types is confirmed by the presence of  hysteresis effects when external phenomena 

change the flow from attached to separated and back again. One example [28] is the case of flow in a circular duct with 

injection normal to the external walls. When the external diffuser walls diverged at an angle of  c~ = 50 ~ and the injected flow 

was on the order of  5 %, energy losses were reduced by 35 %, and attached flow was established at the diffuser walls. 

However, when the relative injected fluid was reduced to 2-2.5 %, the losses increased abruptly and the flow switched 

to separated. This unique hysteresis points to the significant stability of both separated and attached flow. 

In this case, the value of  H at the diffuser inlet cross section (X = 0.02) changed almost instantaneously from 0 to 

1.55, 3.1, 7.84, and 10.7 for n = .1 .3 ,  2.0, 2.4, and 2.65, respectively. 

Figure 6 shows the change in H along the diverging wall. Curves 1-4 correspond to the expansion ratios n = 1.3, 2.0, 
2.4, and 2.65. 

The condition II  < 0.03/cf is fulf'flled at X = 0.02 and all n; i.e., the initial attached flow in the boundary layer can 

be considered stable, according to accepted concepts. Then H should decrease downstream in all cases, according to the 

maximum-stability principle [7]. Indeed, H did decrease for all n in the initial section of  the duct; for n = 2.4 and 2.65 the 

decrease was rather large for 0.1 < X < 0.2 (to H on the order of  3.5). 

An analysis of  the structure of  the parameter H shows that this can occur when t51 decreases, r~. increases, or dP/dx 

decreases. The first two conditions are impossible in diffuser ducts with no external perturbations. Consequently in this case 

a decrease in II  comes directly from a decrease in dP/dx. However, it is known that growth of the boundary layer substantially 
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. changes dP/dx over what can be determined considering only the duct geometry, especially ahead of the separation. Then the 

changes in 6t and dgl/dx must be analyzed in order to determine how they affect the flow separation mechanism. 
5. In order to make the discussion clear and simple, it is convenient to analyze the one-dimensional flow of an 

incompressible fluid. For a qualitative analysis we can assume without loss of  accuracy that there are no boundary layers on 

the lateral (parallel) walls or on the straight wall opposite the one which diverges. Then the equations of motion and continuity 

are written in the form 

dP arc 
= - / , ~  ~ ;  (5.1) 

G = p a h c .  (5.2) 

From (5.1) and (5.2), dP/dx can be represented as 

de ~ an 
dx -- pa~h~ d x '  

(5.3) 

where c is the velocity in the flow core in a cross section at x along the diverging wall; G is the mass flow rate through the 

duct, and h e is the effective height of the cross section. According to these assumptions, the effective height of  the cross section 

at x is h e = h I + x.sin~ - 61/cos~. 
Then (5.3) takes the form 

dP Ga[s ina  - (dJ l /dx)( l /cosa)!  

dx -- pa2(hl 4- .~inar - J1 /co~a)  3 
(5.4) 

From (5.4) it can be seen that the growth of boundary layers affects dP/dx nonuniformly. With a constant flow rate 

through the duct, the value of dP/dx in the same cross section of the boundary layer (x = const) increases when 61 increases 

but decreases when d61/dx increases. 

Figure 7 shows the change in the quantity A = 6to/61x along the diverging wall. Curves 1-4 correspond to expansion 

ratios n = 1.3, 2.0, 2.4, and 2.65. Here 610 is the thickness of the displacement at X = 0.02 and 61x is the thickness of the 

displacement in the cross section at X. 

As can be seen from Fig. 7, d61/dx is much larger for separated conditions (n > 2.0) than for attached conditions. 

Namely this can explain the very sharp decreases in dP/dx for n = 2.4 and 2.65 in the initial section of  the duct (see Fig. 5), 

where 61 is relatively small. In turn, the sharp decrease in dP/dx causes a decrease in H in this region, as shown by the 

tendency of the flow in the boundary layer to maintain its initial state; i.e., by the realization of the maximum-stability principle 

in this case. 

Of course, if d61/dx is large downstream, 61 s t a r t s  to increase rapidly, and therefore dP/dx should increase according 

to (5.4). 

Here we should examine one feature of the change in dP/dx along the diverging wall for separated flow conditions 

(n = 2.4 and 2.65). As can be seen from Fig. 5, after a sharp decrease in dP/dx, a local increase in dP/dx is observed in both 

cases in the initial section of  the duct at X > 0.15. According to local separation theory [26], the local increase in dP/dx is 

induced by the interaction of  the boundary layer with the external flow. However, boundary-layer separation of an 

incompressible fluid is a rather complicated transition process from stable attached flow to a completely developed separation, 

and is not localized in a region of a local pressure increase [29]. The shape of  the distribution of dP/dx in Fig. 5 is 

experimental confirmation of  this theoretical conclusion [29]. Measurements in the boundary layer [11] have shown that 

complete separation of the boundary layer starts at cross sections X = 0.62 and 0.41 for n = 2.4 and 2.65, respectively. 

As 6 t grows, the outer region where turbulence energy is generated, which coincides with the zone in which turbulent 

stresses pass through a maximum, fails at a larger and larger distance from the wall, and less and less energy reaches the wall. 

At the same time the wall region needs more energy input to move fluid against the increasing pressure. As shown above, this 

input comes from the strengthening of the pulsating motion and the growth of  energy production in the outer part of  the layer. 
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When transverse transport equilibrates the energy-production and dissipation processes in the wall zone, the initial 

attached average flow in the boundary layer remains in equilibrium downstream. Here this occurs for n = 1.3 and 2.0, the 

condition H < 0.03/cf is fulfilled along the length of the diverging wall, and a constant value of II is established when 

X > 0.3 and 0.55 for n = 1.3 and 2.0, respectively. 

If these processes do not equilibrate, then H grows without bound downstream [23]. The value of II is on the order 

of 103 and 6" 103 in the cross sections X = 0.55 and 0.35 for n = 2.4 and 2.65. The inequality (4.3) is satisfied when 

X > 0.41 for n = 2.4 and when X > 0.27 for n = 2.65, and the attached flow becomes unstable. 

6r The profile of the averaged velocity in the turbulent boundary layer always undergoes a characteristic deformation 
in the zone 0.2 < Y < 0.4 ahead of the separation regions for diffuser flow. 

Analysis of the equations of motion [30] shows that this deformation is directly related to the tendency of the flow to 

remain attached, because it tends to increase those terms of the equation of motion which equilibrate the stagnation force of 

the pressure. The tangential turbulent stresses, which arise in the wall region of the boundary layer in diffusion flow where 

ar/ay > 0, have a stabilizing role [30], which, according to the same equation of motion, also means that these stresses act 

against the stagnating forces of the pressure. 

As the results presented here show, the processes which intensify the growth of the boundary layer, i.e., the growth 

of d~i/dx initially decrease dP/dx and consequently tend to keep the flow attached. 

Generally speaking, all changes in the transition of the turbulent boundary layer to diffuser flow, including the change 

of the observed nature of the pulsating motion [18-24], tend to maintain the initial attached flow, because they increase the 

inflow to the wall of fluid layers that have a large reserve of kinetic energy and therefore are more stable with respect to 
separation. 

However, at some stage in the flow development, as determined by the inequality (4.3), all these changes become 

insufficient to maintain the initial attached flow. The classic flow in the boundary layer then can no longer react adequately 
to external forces, determined by the duct geometry, and the flow separates. 

In this regard separation can be considered a specific flow reaction which is directed to reduce the pressure gradient 
and which is initially determined by the duct geometry, and the separation can be viewed as a flow transition to a new stable 

state, because duct geometry no longer affects the nature of the flow and the pressure change in the separated flow. 
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